TOPICS IN SET THEORY: Example Sheet 3⁻¹

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge

Michaelmas 2014-2015 Dr Oren Kolman

1 CLUBS

- (i) Suppose $\kappa = cf(\kappa) > \aleph_0$. Show $U = \{\alpha < \kappa : \omega \alpha = \alpha\}$ and $V = \{\alpha < \kappa : \omega^\alpha = \alpha\}$ are club in κ . Give an example of two disjoint clubs in \aleph_ω . Do there exist disjoint stationary subsets of \aleph_1 and of \aleph_2 ?
- (ii) Suppose that A is club in $\kappa = cf(\kappa) > \aleph_0$ and $f : A \subseteq \kappa \to \kappa$ is a function. Prove that $B = \{\alpha \in A : (\forall \xi < \alpha)(f(\xi) < \alpha)\}$ is club in κ . Deduce that if $\lambda < cf(\kappa)$ and F is a family of λ many functions from A into κ , then the set $C = \{\alpha \in A : (\forall f \in F)(\forall \xi < \alpha)(f(\xi) < \alpha)\}$ contains a club in κ . In other words, the ordinals which are closed under members of F contain a club.
- (iii) Suppose $D \subseteq \kappa = cf(\kappa) > \aleph_0$. Show that D is a club of κ if and only if D is the range of a continuous strictly increasing function $f : \kappa \to \kappa$.
- (iv) Prove that if $\delta > cf(\delta) > \aleph_0$, then there is a club E of δ such that no member of E is a regular cardinal. [HINT. Try the range of a continuous function $f : \kappa \to \{\alpha \in \kappa : \alpha > cf(\kappa)\}$.]
- (v) OPTIONAL. Suppose \mathbb{M} is a τ -structure with domain κ where τ is a vocabulary of cardinality less than $\kappa = cf(\kappa) > \aleph_0$. Show that $\{\delta \in \kappa : \mathbb{M} \mid \delta \text{ is an elementary substructure of } \mathbb{M}\}$ is a club of κ . [HINT. This assumes some first-order model theory: use Skolem functions and/or the elementary chain theorem.]

2 Non-stationary sets

Suppose $\kappa = cf(\kappa) > \aleph_0$, and X_α is non-stationary in κ for $\alpha < \kappa$.

- (i) Show $\bigcup_{\alpha < \kappa} (X_{\alpha} \setminus (\alpha + 1))$ is non-stationary in κ .
- (ii) If $\{X_{\alpha} : \alpha < \kappa\}$ is pairwise disjoint, prove $X = \bigcup_{\alpha < \kappa} X_{\alpha}$ is stationary if and only if $B = \{\min(X_{\alpha}) : \alpha < \kappa\}$ is stationary.
- (iii) If $\{X_{\alpha} : \alpha < \kappa\}$ is pairwise disjoint, then there exists $a \in [\kappa]^{\kappa}$ such that $\bigcup_{\alpha \in a} X_{\alpha}$ is non-stationary.

3 Applications

- (i) Suppose $f : \omega_1 \to \mathbb{R}$ is a continuous function, where ω_1 has the order topology. Prove $(\exists \alpha < \omega_1)(\forall \beta > \alpha)(f(\beta) = f(\alpha))$, i.e. f is eventually constant.
- (ii) The ordinal ω_1 with the order topology is not a metrizable topological space.
- (iii) Prove the following result of Shelah. Suppose S is a stationary subset of $\kappa = cf(\kappa) > \aleph_0$ and g and h are functions from S into λ such that $(\forall \xi \in S)(g(\xi) \neq h(\xi))$. Then there exists a stationary subset $S' \subseteq S$ such that:

$$\{g(\xi): \xi \in S'\} \cap \{h(\zeta): \zeta \in S'\} = \emptyset.$$

¹Version 16/11/2014; comments, improvements and corrections will be much appreciated; please send to ok261@cam.ac.uk; rev. 14/12/2014.

[HINT. Note there is a stationary set $D_1 \subseteq S$ such that $(\forall \zeta, \eta \in D_1)((g(\zeta) < \zeta \Leftrightarrow g(\eta) < \eta) \land (h(\zeta) < \zeta \Leftrightarrow h(\eta) < \eta))$; apply Fodor's Lemma to find a stationary subset $D_2 \subseteq D_1$ such that if $g(\zeta) < \zeta$ for all $\zeta \in D_1$, then g is constant on D_2 and the same for h; now use Question 1 to obtain a club C closed under the functions g and h. Let $S' = D_2 \cap C$.]

4 CLUB FILTERS

A filter over a non-empty set I (or on P(I), in P(I), or sometimes on I) is a family $F \subseteq P(I)$ such that

- (i) $\emptyset \notin F, I \in F$;
- (ii) if $X, Y \in F$, then $X \cap Y \in F$;
- (iii) if $X \in F, X \subseteq Y \subseteq I$, then $Y \in F$.

A filter F is principal if $F = \{X \in P(I) : Y \subseteq X\}$ for some $Y \in P(I)$; otherwise F is non-principal. A filter F over I is κ -complete if for every $\lambda < \kappa$ and $\{X_{\alpha} \in F : \alpha < \lambda\}$, $\bigcap_{\alpha < \lambda} X_{\alpha} \in F$. A filter F over κ is normal if for every $\{X_{\alpha} \in F : \alpha < \kappa\}$, the diagonal intersection $\triangle_{\alpha < \kappa} X_{\alpha} = \{\xi < \kappa : (\forall \alpha < \xi) (\xi \in X_{\alpha})\} \in F$.

- (i) Suppose F is a normal filter over a cardinal κ , $S \subseteq \kappa, \kappa \setminus S \notin F$, and f is a regressive function on S. Show that there exists $X \subseteq S$ and $\gamma < \kappa$ such that $\kappa \setminus X \notin F$ and $(\forall \xi \in X)(f(\xi) = \gamma)$.
- (ii) Suppose $\kappa \ge cf(\kappa) > \aleph_0$. The *club filter* on κ is the family $C_{\kappa} = \{X \in P(I) : X \supseteq C \text{ for some club } C \text{ in } \kappa\}$. Note that C_{κ} is a filter.
 - (a) Show that C_{κ} is $cf(\kappa)$ -complete.
 - (b) Prove that if $\kappa = cf(\kappa) > \aleph_0$, then C_{κ} is normal.

5 Splitting Stationary Sets and Solovay's Theorem

- (i) Suppose $\kappa = cf(\kappa) > \aleph_0$. Prove that there exists a family $\{S_\alpha \subseteq \kappa : \alpha < \kappa\}$ of pairwise disjoint stationary sets such that $\kappa = \bigcup_{\alpha < \kappa} S_\alpha$. [HINT. Consider cases according as κ is a limit cardinal or a successor cardinal, using some of the elements of an Ulam matrix on κ in the latter case.]
- (ii) OPTIONAL^{**}: SOLOVAY'S THEOREM. Suppose S is a stationary subset of $\kappa = cf(\kappa) > \aleph_0$. Prove that there exists a family $\{S_\alpha : \alpha < \kappa\}$ of pairwise disjoint stationary sets such that $S = \bigcup_{\alpha < \kappa} S_\alpha$.
- (iii) Suppose S is stationary in $\kappa = cf(\kappa) > \aleph_0$. Prove that there exists a family F of 2^{κ} stationary subsets of S such that if $A \neq B \in F$, then $A \setminus B$ and $B \setminus A$ are stationary in κ . [HINT. Part (ii).]
- 6 Non-stationary Ideals

An *ideal* over a non-empty set I is a family $N \subseteq P(I)$ such that

- (i) $\emptyset \in N, I \notin N$;
- (ii) if $X, Y \in N$, then $X \cup Y \in N$;

(iii) if $X \in N, Y \subseteq X \subseteq I$, then $Y \in F$.

An ideal is an ideal over $dom(I) = \bigcup I$. Let $N^+ = P(I) \setminus N$ be the family of N-nonnegligible sets. The dual filter N^* of an ideal N is the filter $\{X \in P(I) : I \setminus X \in N\}$. An ideal N is κ -complete and normal if the corresponding dual filter N^* has these properties. The dual ideal F^* of a filter F is defined analogously: $F^* = \{X \in P(I) : I \setminus X \in F\}$. Clearly, for an ideal N and a filter F, $N^{**} = N$; $F^{**} = F$. For a cardinal κ , the nonstationary ideal over κ is the ideal $NS_{\kappa} = \{X \in P(I) : X \subseteq Y \text{ for some non-stationary} subset <math>Y \subseteq \kappa\}$. So NS_{κ}^+ is the collection of stationary sets of κ . An ideal N is λ saturated if for any $\{X_{\alpha} : \alpha < \lambda\} \subseteq N^+$ there exist $\beta < \gamma < \lambda$ such that $X_{\beta} \cap X_{\gamma} \in N^+$. Let $sat(N) = min\{\lambda : N \text{ is } \lambda\text{-saturated}\}$.

- (i) Show $C_{\kappa}^* = NS_{\kappa}$.
- (ii) Prove Ulam's theorem: there is no κ^+ -saturated κ^+ -complete ideal over κ^+ .
- (iii) Suppose that for some $\lambda < \kappa, N$ is a λ -saturated κ -complete ideal over κ . Determine whether κ has the tree property, i.e. whether every κ -tree has a cofinal branch. [HINT. WLOG, any candidate κ -tree \mathbb{T} has domain $T = \kappa$; consider $D_{\xi} = \{\zeta \in \kappa : \xi <_{\mathbb{T}} \zeta\}.$]

7 STATIONARY SETS AND A VARIANT OF FODOR'S LEMMA

Let A be a set of cardinality $\kappa = cf(\kappa) > \aleph_0$. A κ -filtration of A is an indexed sequence $\{A_\alpha : \alpha < \kappa\}$ such that for all $\alpha, \beta < \kappa$

- (a) $|A_{\alpha}| < \kappa;$
- (b) $\alpha < \beta$ implies $A_{\alpha} \subseteq A_{\beta}$;
- (c) $\delta \in lim(\kappa)$ implies $A_{\delta} = \bigcup \{A_{\alpha} : \alpha < \delta\};$
- (d) $A = \cup \{A_{\alpha} : \alpha < \kappa\}.$
- (i) Suppose $\{A_{\alpha} : \alpha < \kappa\}$ and $\{B_{\alpha} : \alpha < \kappa\}$ are κ -filtrations of A. Show the set $\{\alpha \in \kappa : A_{\alpha} = B_{\alpha}\}$ is a club of κ .
- (ii) Let $\{A_{\alpha} : \alpha < \kappa = cf(\kappa)\}$ be a κ -filtration of A. Prove there exists a club C of κ such that for all $\alpha \in C$, $|A_{\alpha^+} \setminus A_{\alpha}| = |\alpha^+ \setminus \alpha|$ where α^+ is the successor of α in C, i.e. $\alpha^+ = inf\{\beta \in C : \beta > \alpha\}$.
- (iii) Suppose $\{A_{\alpha} : \alpha < \kappa\}$ is a κ -filtration of a set A of cardinality κ . Prove the following variant of Fodor's Lemma: if S is a stationary subset of κ and $f : S \to A$ is a function such that for all $\alpha \in S$, $f(\alpha) \in A_{\alpha}$, then there exists a stationary $S' \subseteq S$ such that $f \upharpoonright S'$ is constant.
- 8 CLUBS AND GAMES

Let $W \subseteq [\omega_1]^{<\omega_1}$. Let G_W be the following game of length ω : players I and II take turns to choose countable ordinals $\alpha_0, \alpha_1, \ldots$; player I wins G_W if $\{\alpha_n : n \in \omega\} \in W$. Regarding each countable ordinal α as the set $\{\beta : \beta < \alpha\}$, show that player I has a winning strategy if and only if W contains a club of ω_1 . Show that player II has a winning strategy if and only if the complement of W contains a club. Deduce that there are games G_W which are not determined, i.e. neither player has a winning strategy.

9 WEAKLY COMPACT CARDINALS

- (i) Let A be a set of cardinals such that for every regular cardinal $\lambda \in A, A \cap \lambda$ is not stationary in λ . Prove there exists an injective function g on A such that $(\forall \alpha \in A)(g(\alpha) < \alpha)$.
- (ii) Suppose that κ is a *weakly compact cardinal*, i.e. κ is (strongly) inaccessible and there are no κ -Aronszajn trees (κ has the tree property). Prove that for every stationary subset S of κ , there is a regular cardinal $\lambda < \kappa$ such that $S \cap \lambda$ is stationary in λ .
- 10 KUEKER CLUBS

Suppose $\kappa = cf(\kappa) > \aleph_0$. A club on $[A]^{<\kappa}$ is a family $C \subseteq [A]^{<\kappa}$ such that C is closed under unions of chains of length less than κ and $(\forall X \in [A]^{<\kappa})(\exists Y \in C)(X \subseteq Y)$. A set $S \subseteq [A]^{<\kappa}$ is stationary in $[A]^{<\kappa}$ if $S \cap C \neq \emptyset$ for every club C in $[A]^{<\kappa}$. Formulate and prove analogues of the standard results on clubs, stationary sets and regressive functions for the above definitions.

- 11 Prove that \diamondsuit implies that there exists a family $\{Z_{\alpha} : \alpha < 2^{\aleph_1}\}$ such that:
 - (i) $\forall \alpha < 2^{\aleph_1}, Z_{\alpha}$ is a stationary subset of \aleph_1 ;
 - (ii) $\forall \alpha < \beta < 2^{\aleph_1}, Z_\alpha \cap Z_\beta$ is countable.

12 Inconsistent Bogus Diamonds

Let $\blacklozenge(1)$ be the assertion $(\exists \{A_{\alpha} \subseteq \alpha : \alpha < \omega_1\})(\forall X \subseteq \omega_1)(\{\alpha < \omega_1 : X \cap \alpha = A_{\alpha}\})$ contains a club in ω_1). Let $\blacklozenge(2)$ be the assertion $(\exists \{A_{\alpha} \subseteq \alpha : \alpha < \omega_1\})(\forall X \subseteq \omega_1)(\text{if } X)$ is stationary, then $\{\alpha \in X : X \cap \alpha = A_{\alpha}\} \neq \emptyset$.

- (i) Show $\blacklozenge(1)$ is false.
- (ii) Show $\blacklozenge(2)$ is false.

13 DIAMONDS FOR FUNCTIONS

Suppose that S is a stationary subset of $\lambda = cf(\lambda) > \aleph_0$. Let $\diamondsuit_{\lambda}(S)$ denote the assertion $(\exists \{A_{\alpha} \subseteq \alpha : \alpha \in S\})(\forall X \subseteq \lambda)(\{\alpha \in S : X \cap \alpha = A_{\alpha}\})$ is stationary in λ). Let \diamondsuit_{λ} mean $\diamondsuit_{\lambda}(\lambda)$; so in this notation \diamondsuit is \diamondsuit_{μ_1} .

Prove that $\Diamond_{\lambda}(S)$ is equivalent to the assertion: there exists $\{f_{\alpha} : \alpha \in S\}$ such that:

- (i) $\forall \alpha \in S, f_{\alpha} : \alpha \to \alpha$ is a function;
- (ii) $\forall f : \lambda \to \lambda, \{ \alpha \in S : f \upharpoonright \alpha =: f_{\alpha} \}$ is stationary in λ .

14 DIAMOND EQUIVALENCES

Let \diamondsuit' denote the following assertion: there exists a family $\{E_{\alpha} : \alpha \in \omega_1\}$ such that:

- (i) $\forall \alpha \in \omega_1, E_\alpha$ is a countable set of subsets of α ;
- (ii) $\forall X \subseteq \omega_1, \{\alpha \in \omega_1 : X \cap \alpha \in E_\alpha\}$ is stationary in ω_1 .

Prove that \diamondsuit' and \diamondsuit are equivalent in ZFC.

15 DIAMOND AND THE CLUB PREDICTION PRINCIPLE

- (i) Show that \diamondsuit implies \clubsuit .
- (ii) Prove Devlin's theorem (1979): $\clubsuit + CH$ implies \diamondsuit . Deduce that \diamondsuit is equivalent to $\clubsuit + CH$.

16 STRONGER DIAMONDS

Let \diamond^+ denote the assertion there exists $\{S_{\alpha} \subseteq P(\alpha) : \alpha \in \omega_1\}$ such that $|S_{\alpha}| \leq \aleph_0$ and $(\forall X \subseteq \omega_1)(\exists B \in [\omega_1]^{\omega_1})(\forall \alpha < \omega_1)(\alpha = sup(B \cap \alpha) \Rightarrow X \cap \alpha \in S_{\alpha} \land B \cap \alpha \in S_{\alpha}).$

- (i) Prove that \diamondsuit^+ implies \diamondsuit' .
- (ii) Deduce that \diamondsuit^+ implies \diamondsuit .

REMARK: Jensen proved that \diamond^+ implies the Kurepa Hypothesis. This stronger diamond can be defined for the other uncountable cardinals κ and used to settle combinatorial hypotheses about κ -trees.

17 Optional. Ineffable cardinals and the κ -Kurepa Hypothesis

A cardinal κ is *ineffable* if $\kappa = cf(\kappa) > \aleph_0$ and whenever $f : [\kappa]^2 \to 2$ is a function, then there is a stationary set $S \subseteq \kappa$ such that $f \upharpoonright S$ is constant, i.e. $(\exists \gamma)(\forall \xi \in S)(f(\xi) = \gamma)$.

- (i) Let $\kappa = cf(\kappa) > \aleph_0$. Suppose (*) holds: for every $\{A_\alpha \subseteq \alpha : \alpha < \kappa\}$, there exists $A \subseteq \kappa$ such that $\{\alpha < \kappa : A \cap \alpha = A_\alpha\}$ is stationary in κ . Prove that κ is ineffable.
- (ii) Prove that if κ is ineffable, then (*) holds.
- (iii) Prove the following result of Jensen and Kunen: if κ is ineffable, then the κ -Kurepa Hypothesis is false. [HINT. Do this by refuting the existence of a κ -Kurepa family, i.e. a family $F \subseteq P(\kappa)$ such that $|F| = \kappa^+$ and $(\forall \alpha < \kappa)(\{X \cap \alpha : X \in F\})$ has cardinality at most $|\alpha| + \aleph_0$; it is a well-known short theorem that the existence of such a family is equivalent to that of a κ -Kurepa tree.]
- **18** (i) Suppose π is a bijection from $\lambda^+ \geq \aleph_1$ onto $\lambda \times \lambda^+$. Show there exists a club C of λ^+ such that for all $\delta \in C$, the restriction map $\pi \upharpoonright \delta$ is a bijection from δ onto $\lambda \times \delta$.
 - (ii) For a cardinal λ and a set W, let $[W]^{\leq \lambda} = \{Y \subseteq W : |Y| \leq \lambda\}$. If $2^{\lambda} = \lambda^+$, let $\{X_{\alpha} : \alpha < \lambda^+\}$ be an enumeration of $[\lambda^+]^{\leq \lambda}$ and suppose $Z \subseteq \lambda^+$. Show that for some club C of λ^+ , for all $\delta \in C$ there are arbitrarily large $\alpha < \delta$ such that for some $\beta < \delta, Z \cap \alpha = X_{\beta}$.
 - (iii) Suppose $cf(\delta) = \kappa > \aleph_0$ and h is a function from $dom(h) \supseteq \delta$ into κ . Prove that the following are equivalent:

- (a) h is one-to-one on some club C of δ ;
- (b) h is strictly increasing on some club D of δ ;
- (c) $range(h \upharpoonright S)$ is unbounded in κ for every stationary subset $S \subseteq \delta$.

REMARK These propositions are the first steps of a very recent short proof by Peter Komjath of Shelah's theorem (see the reference below) that $2^{\lambda} = \lambda^{+}$ implies $\diamondsuit_{\lambda^{+}}$ for $\lambda \geq \aleph_{1}$; this is not the case for $\lambda = \aleph_{0}$ as CH does not imply \diamondsuit .

Open Research Problems.

(i) Assume that $\lambda = \lambda^{<\lambda} = 2^{\mu}$ is a regular limit cardinal. Determine whether \Diamond_{λ} is a theorem of ZFC. See: S. Shelah, Diamonds, Proc. Amer. Math. Soc. 138 (2010), 2151–2161; M. Zeman, Diamonds, GCH and weak square, Proc. Amer. Math. Soc. 138 (2010), 1853–1859.